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Output nonlocality and nonclassicality for the two modes are investigated in an entanglement laser sys-
tem. Within the framework of a quantum theory of multiwave mixing, nonlocality and nonclassicality are
discussed according to the violations of Bell inequality and Cauchy-Schwarz inequality. It is found that
both nonlocality and nonclassicality can be fulfilled in the outside cavity fields under certain conditions.
It is also shown that there are some nonclassical states that do not show nonlocality.
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Quantum nonlocality, one of the most remarkable aspects
of quantum theory, can be described by the violation of
Bell inequality[1]. Recently, violations of Bell inequality
in different physical systems have been investigated[2−6].
Cauchy-Schwarz (CS) inequality is the mathematical re-
lations between the cross-correlation function and the
autocorrelation function of two intensity-correlated light
beams[7], and its violation is a nonclassical characteristic
of light fields[8].

On the other hand, entanglement is arguably the cen-
tral concept in quantum information processing[9−12].
Recently, continuous-variable entanglement is proposed
as an alternative to discrete level systems for perform-
ing quantum information tasks[13,14]. The appearance
of laser greatly changed the world nearly in every as-
pect of daily life. Thus, the entangled lights in laser
systems must take an important effect in the process of
quantum information, especially in quantum communi-
cations. In some recent studies, the entanglement am-
plifiers based on laser systems using three-level atoms in-
teracting with two modes of the cavity field were theoret-
ically proposed[15−17]. However, few attention has been
devoted to the output nonlocal and nonclassical charac-
teristics in these laser systems. For instance, Tan et al.
investigated the output entanglement in the correlated
emission laser[18]. Zhou et al. studied the output squeez-
ing and entanglement in a single-atom laser[19]. Our pre-
vious work also investigated the output entanglement in
a two-mode three-level atomic system[20].

In this letter, based on the input-output theory, we in-
vestigate the output nonlocality and nonclassicality in a
two-mode entanglement laser system. Under the frame-
work of a quantum theory of multiwave mixing, the mea-
surements of nonlocality and nonclassicality are discussed
according to the violations of Bell inequality and CS in-
equality, respectively. It is shown that there are some
nonclassical states that do not show nonlocality.

We consider a two-photon three-level cascade configur-
ation, as shown in Fig. 1. The upper level a and the bot-
tom level c have the same parity, but the intermediate
level b has an opposite one. The dipole-allowed transi-
tions a←→b and b←→c with frequencies ν1 and ν3, re-
spectively, are considered weak and treated quantum me-

chanically up to the second order in coupling constant.
The transition a←→c requires two pump photons of fre-
quency ν2. Strong pump field is treated classically up to
all orders. We assume that the one-photon pump detun-
ing ωbc−ν2 is sufficiently large that the dipole transition
c←→b with pump frequency ν2 is negligible. The pump
frequency ν2 is exactly one half the atomic transition fre-
quency ωac ≡ ωa − ωc. The side-mode frequencies ν1

and ν3 are assumed to satisfy the conservation condition
ν1 + ν3 = 2ν2, which gives the relation between the side-
mode detuning ∆′ and the beat frequency ∆ ≡ ν2 − ν1

as ∆′ = (ωbc − ν2)−∆.
The Hamiltonian for the atom-field system is[21]

H = H0 + V, (1)

where the unperturbed part of the Hamiltonian is

H0 =
∑

i=a,b,c

~ωi|i〉〈i|+

3∑

j=1

~νja
†
jaj , (2)

and the perturbed part is

V =

3∑

j=1

~gjajUjσ
†
j + H.c., (3)

where a1 and a3 are the annihilation operators for the
field modes 1 and 3, a2 is the effective two-photon

Fig. 1. Systematic diagram for a two-mode three-level entan-
glement laser system.
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annihilation operator for the pump mode, Uj = Uj(r) is
the spatial mode factor for the jth field mode, and gj

is the corresponding atom-field coupling constant. The

matrices σ†
j are

σ†
1 =

[
0 1 0
0 0 0
0 0 0

]
, σ†

2 =

[
0 0 1
0 0 0
0 0 0

]
, σ†

3 =

[
0 0 0
0 0 1
0 0 0

]
.

(4)
The time dependence of the atom-field density opera-

tor ρa−f can be obtained from the basic density operator
equation of motion, as

d

dt
ρa−f = −

i

~
[H, ρa−f ] + r, (5)

where r denotes the relaxation processes. By considering
the slowly varying field modes and taking traces over the
atomic states, the density matrix equation of motion for
the field modes, as obtained in Ref. [21] is

d

dt
ρ =−A1(ρa1a

†
1 − a†

1ρa1)−(B1 + κ1)(a
†
1a1ρ− a1ρa†

1)

−A3(ρa3a
†
3 − a†

3ρa3)−(B3 + κ3)(a
†
3a3ρ− a3ρa†

3)

+ C3(a
†
3a

†
1ρ− a†

1ρa†
3)e

−iφ

+ D1(ρa†
3a

†
1 − a†

1ρa†
3)e

−iφ + H.c., (6)

with κj(j = 1, 3) is the damping constant of each mode.
Different coefficients are given by

A1 =
Ng2

1D1

1 + I2
2

fa + I2
2D∗

3 D2/4T1T2

1 + I2
2D1D

∗
3 /4T1T2

, (7a)

B1 =
Ng2

1D1

1 + I2
2

fb

1 + I2
2D1D

∗
3 /4T1T2

, (7b)

A3 =
Ng2

3D3

1 + I2
2

fb

1 + I2
2D∗

1 D3/4T1T2
, (7c)

B3 =
Ng2

3D3

1 + I2
2

fc − I2
2D∗

1 D2/4T1T2

1 + I2
2D∗

1 D3/4T1T2
, (7d)

C3 =
iNg2

3D3

1 + I2
2

I2

2(T1T2)1/2

−faD
∗
1 + D2

1 + I2
2D∗

1 D3/4T1T2
, (7e)

D1 =
iNg2

1D1

1 + I2
2

I2

2(T1T2)1/2

fcD
∗
3 + D2

1 + I2
2D1D

∗
3 /4T1T2

. (7f)

The complex Lorentzian for the field modes 1 and 3 is
D1,3 = 1/(γ1,3 + i∆1,3), where ∆1 = ωa−ωb− ν1 = −∆′

and ∆3 = ωb−ωc−ν3 = ∆′. D2 = 1/γ2, where γ2 ≡ 1/T2

is the two-photon coherent decay rate between the levels
a and c. The dimensionless pump intensity I2 is defined
by I2 = 2|V2|(T1T2)

1/2, where V2 = g2U2(n2)
1/2 is the

effective two-photon interaction energy. The population
difference decay time T1 is

T1 =
1

Γa

[
1 +

Γ1

2Γ3

]
, (8)

where Γa = Γ1 + Γ2 is the upper, level decay rate to the
lower levels b and c. Γ1 and Γ3 are the decay constants
for the a→b and b→c transitions, and Γ2 allows for non-
radiative decay of level a to c. The probability factors
fk are

fa =
Γ3

Γ1 + 2Γ3
I2
2 , (9a)

fb =
Γ1

Γ1 + 2Γ3
I2
2 , (9b)

fc = 1 + fa. (9c)

Also, φ is the phase of the classical pump field, which
can be obtained from the relation V2 = |V2|e

−iφ, and N
is the total number of interacting atoms.

In order to look for a violation of Bell inequality
when dealing with a driven two-mode three-level cascade
atomic system, we use the generalization of Bell inequal-
ity proposed by Ansari[6]. The Bell inequality can be
rewritten in the form

|B| < 2, (10)

where

B = 1.414
〈a†2

1 a2
1〉+ 〈a

†2
3 a2

3〉 − 4〈a†
1a

†
3a1a3〉

〈a†2
1 a2

1〉+ 〈a
†2
3 a2

3〉+ 2〈a†
1a

†
3a1a3〉

. (11)

In order to characterize the statistical properties of
light beams in one state, we introduce the following
function[22],

Gij =
〈a†

ia
†
jaiaj〉

〈a†
iai〉〈a

†
jaj〉

, i, j = 1, 3, (12)

where Gii define the degrees of the second-order coher-
ence in the modes and Gij (i6=j) describes the degree of
intermode correlation. The CS inequality can be violated
in systems where the correlation between the photons
of different modes is larger than the correlation of the
photon of the same mode. Hence, the CS inequality is
violated when

G2
ij > GiiGjj . (13)

For convenience, we discuss the quantity

λ =
〈a†

1a
†
3a1a3〉

〈a†
1a1〉〈a

†
3a3〉

−
(〈a†2

1 a2
1〉〈a

†2
3 a2

3〉)
1/2

〈a†
1a1〉〈a

†
3a3〉

. (14)

The CS inequality is violated if λ > 0.
Using the same methods in Ref. [6], the fourth-order

moments can be calculated from the steady-state solution
in the Q representation in antinormally ordered form.

Considering the commutation relation [ai, a
†
i ] = 1, we

can obtain

〈a†2
1 a2

1〉 = 2〈a†
1a1〉

2, (15)

〈a†2
3 a2

3〉 = 2〈a†
3a3〉

2, (16)

〈a†
1a

†
3a1a3〉 = 〈a

†
1a1〉〈a

†
3a3〉+ |〈a1a3〉|

2. (17)

After substituting Eqs. (15)–(17) into Eq. (14), the fol-
lowing simple expression for λ is obtained:

λ =
|〈a1a3〉|

2

〈a†
1a1〉〈a

†
3a3〉

− 1. (18)

By means of the input-output theory[23], the steady-
state expressions for the spectral density of the second-
order moments outside the cavity can be calculated along
the same lines as discussed by Holm et al.[24,25]. The re-
sulting expressions are
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〈a†
1a1〉out = 2κ

(α3 − iω)(α∗
3 + iω)A1 + |D1|

2A3 − (α∗
3 + iω)D∗

1C3 + c.c.

|(α1 + iω)(α∗
3 + iω) + D1C∗

3 |
2

, (19)

〈a†
3a3〉out = 2κ

(α1 − iω)(α∗
1 + iω)A3 + |C3|

2A1 + (α∗
1 + iω)C∗

3C3 + c.c.

|(α3 + iω)(α∗
1 + iω) + C3D∗

1 |
2

, (20)

〈a1a3〉out = 2κ
(α∗

3 + iω)C3(A1 + A∗
1)− (α∗

1 − iω)D1(A3 + A∗
3) + (α∗

1 − iω)(α∗
3 + iω)C3 −D1|C3|

2

|(α1 + iω)(α∗
3 + iω) + D1C∗

3 )|2
, (21)

where αj = Bj−Aj +κj(j = 1, 3) and ω is the frequency
deviation from the central frequency.

In Fig. 2, we plot the value of |B|out and λout as a
function of ω̃ with different values of the cooperativity
parameter C, where C = Ng2/2κγ (for simplicity, we
assume g1 = g3 = g and κ1 = κ3 = κ). It can be clearly
seen from the figures that Bell inequality and CS inequal-
ity are both violated in different frequency regions. At
the central frequency, the degree of violation is decreased
with the increasing of C. In the larger frequency regions,
the degree of violation is enhanced with the increasing
of C. In addition, for a fixed value of C, the degree of
violation is enhanced with the increasing of frequency.

In order to investigate the relation between violations
of the Bell inequality and CS inequality, we plot |B|out

and λout as a function of I2 with different values of C
in Fig. 3. It is not difficult to see from Fig. 3(a), that
for the small pump intensities, the values of |B|out are
smaller than 2, i.e., Bell inequality is not violated in
these regions. With the increasing of I2, the values of
|B|out are bigger than 2. Thus, Bell inequality is violated
in these regions, i.e., the output states display some non-
local characteristics. In addition, we need much larger
I2 to obtain the nonlocality for the bigger C. However,
violation of CS inequality occurred even in the small
areas of I2 (see Fig. 3(b)). There are some nonclassi-
cal states that do not show nonlocality in this system.
Nonlocality is more difficult to fulfill in comparison with

Fig. 2. Variance (a) |B|out and (b) λout versus eω for φ=π/2;
I2=50; C=1, 5, and 10; Γa = 1; Γ1 = Γ3 = 1; γ1 = γ3 = γ2 =
1. All frequencies are in units of γ2.

Fig. 3. Variance (a) |B|out and (b) λout versus I2, the other
parameters are the same as in Fig. 2.

nonclassicality. If we want to achieve the nonlocality and
nonclassicality at the same time, large pump intensity
is necessary. These results have also been predicted re-
cently in a different three-level atomic system[26].

Considering the output entanglement in this system[20],
we find that the variations of entanglement, nonclassical-
ity, and nonlocality are different. Degree of entanglement
and violations of such inequalities look contradictory.
Generally speaking, the more violations of Bell inequal-
ity and CS inequality, the more nonlocal and nonclassical
effects we can obtain. However, better entanglement was
obtained at the central frequency and at a certain value
of pump intensity[20]. The physical reason for this result
is not very clear at this point. One possible explanation
is that the definition of continuous-variable entangle-
ment’s degree remains an open question and must be
further investigated.

Before we conclude, it may be profitable to give a brief
discussion on the experimental realization of the present
work. The generation of entanglment has been experi-
mentally implemented in a single trapped ion[27] and in
a cavity[28]. In this study, the quantities in inequalities
(11 or 18) can be measured in a relatively straightfor-
ward way in experiments[29]. We predict that the results
obtained in this letter can be verified in the future ex-
periments.

In conclusion, we investigate the output nonlocality
and nonclassicality in an entanglement laser system. The
nonlocality and nonclassicality are discussed by the vio-
lations of Bell inequality and CS inequality, respectively.
It is found that both Bell inequality and CS inequality
can be violated outside cavity fields under certain con-
ditions. It is also shown that there are some nonclassical
states that do not show nonlocality. We hope our work
can enhance the understanding of the basic features of
quantum fields.

This work was supported by the National Natural Sci-
ence Foundation of China (Nos. 11047190 and 11047164)
and the Innovation Program of Shanghai Municipal Ed-
ucation Commission (No. 11YZ216).
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Müstecaplioǧlu, Phys. Rev. A 79, 053603 (2009).

15. H. Xiong, M. O. Scully, and M. S. Zubairy, Phys. Rev.
Lett. 94, 023601 (2005).

16. L. Zhou, H. Xiong, and M. S. Zubairy, Phys. Rev. A 74,
022321 (2006).

17. S. Tesfa, Phys. Rev. A 74, 043816 (2006).

18. H. T. Tan, S. Y. Zhu, and M. S. Zubairy, Phys. Rev. A
72, 022305 (2005).

19. L. Zhou, Q. X. Mu, and Z. J. Liu, Phys. Lett. A 373,
2017 (2009).

20. Y. X. Ping, B. Zhang, and Z. Cheng, Eur. Phys. J. D
44, 175 (2007).

21. N. A. Ansari, Phys. Rev. A 46, 1560 (1992).

22. N. A. Ansari and M. S. Zubiry, Phys. Rev. A 38, 2380
(1988).

23. M. J. Collet and C. W. Gardiner, Phys. Rev. A 30, 1386
(1984).

24. D. A. Holm and M. Sargent, Phys. Rev. A 35, 2150
(1987).

25. S. An and M. Sargent, Phys. Rev. A 39, 1841 (1989).

26. E. A. Sete, Int. J. Quant. Inf. 6, 885 (2008).

27. C. Monroe, D. M. Meekhof, B. E. King, and D. J.
Wineland, Science 272, 1131 (1996).

28. M. Brune, E. Hagley, J. Dreyer, X. Maitre, A. Maali, C.
Wunderlich, J. M. Raimond, and S. Haroche, Phys. Rev.
Lett. 77, 4887 (1996).

29. M. Hillery and M. S. Zubairy, Phys. Rev. A 74, 032333
(2006).

092701-4


